Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(10): 8926-8936, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29460620

RESUMO

Hydrogels delivering on-demand tailorable optical properties are formidable smart materials with promising perspectives in numerous fields, including the development of modern sensors and switches, the essential quality criterion being a defined and readily measured response to environmental changes. Lanthanide ion (Ln3+)-chelating bicelles are interesting building blocks for such materials because of their magnetic responsive nature. Imbedding these phospholipid-based nanodiscs in a magnetically aligned state in gelatin permits an orientation-dependent retardation of polarized light. The resulting tailorable anisotropy gives the gel a well-defined optical signature observed as a birefringence signal. These phenomena were only reported for a single bicelle-gelatin pair and required high magnetic field strengths of 8 T. Herein, we demonstrate the versatility and enhance the viability of this technology with a new generation of aminocholesterol (Chol-NH2)-doped bicelles imbedded in two different types of gelatin. The highly magnetically responsive nature of the bicelles allowed to gel the anisotropy at commercially viable magnetic field strengths between 1 and 3 T. Thermoreversible gels with a unique optical signature were generated by exposing the system to various temperature conditions and external magnetic field strengths. The resulting optical properties were a signature of the gel's environmental history, effectively acting as a sensor. Solutions containing the bicelles simultaneously aligning parallel and perpendicular to the magnetic field directions were obtained by mixing samples chelating Tm3+ and Dy3+. These systems were successfully gelled, providing a material with two distinct temperature-dependent optical characteristics. The high degree of tunability in the magnetic response of the bicelles enables encryption of the gel's optical properties. The proposed gels are viable candidates for temperature tracking of sensitive goods and provide numerous perspectives for future development of tomorrow's smart materials and technologies.

2.
Langmuir ; 33(25): 6363-6371, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28594186

RESUMO

Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and its lanthanide ion (Ln3+) chelating phospholipid conjugate, 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA), assemble into highly magnetically responsive polymolecular assemblies such as DMPC/DMPE-DTPA/Ln3+ (molar ratio 4:1:1) bicelles. Their geometry and magnetic alignability is enhanced by introducing cholesterol into the bilayer in DMPC/Cholesterol/DMPE-DTPA/Ln3+ (molar ratio 16:4:5:5). However, the reported fabrication procedures remain tedious and limit the generation of highly magnetically alignable species. Herein, a simplified procedure where freeze thawing cycles and extrusion are replaced by gentle heating and cooling cycles for the hydration of the dry lipid film was developed. Heating above the phase transition temperature Tm of the lipids composing the bilayer before cooling back below the Tm was essential to guarantee successful formation of the polymolecular assemblies composed of DMPC/DMPE-DTPA/Ln3+ (molar ratio 4:1:1). Planar polymolecular assemblies in the size range of hundreds of nanometers are achieved and deliver unprecedented gains in magnetic response. The proposed heating and cooling procedure further allowed to regenerate the highly magnetically alignable DMPC/Cholesterol/DMPE-DTPA/Ln3+ (molar ratio 16:4:5:5) species after storage for one month frozen at -18 °C. The simplicity and viability of the proposed fabrication procedure offers a new set of highly magnetically responsive lanthanide ion chelating phospholipid polymolecular assemblies as building blocks for the smart soft materials of tomorrow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...